Water Rennovation in Ukraine

Project no. 22320101

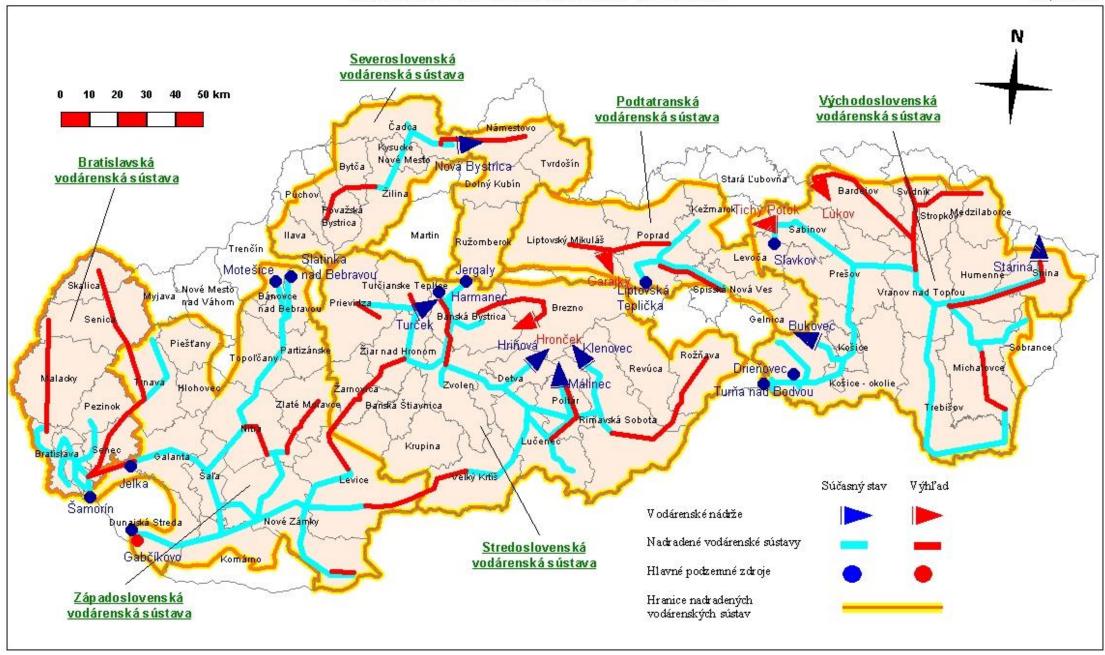
Water Rennovation in Ukraine

University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Debrecen, Hungary
National University of Water and Environmental Engineering, Rivne, Ukraine
Slovak University of Agriculture in Nitra, Faculty of Horticulture and Landscape Engineering, Slovakia
University of Agriculture in Krakow, Department of Water Engineering and Geotechnics, Poland
Mendel University in Brno, Faculty of Forestry and Wood Technology, Czech Republic

The project is co-financed by the Governments of the Czechia, Hungary, Poland and Slovakia through Visegrad Grants from International Visegrad Fund. The mission of the fund is to advance ideas for sustainable regional cooperation in Central Europe.

Water Rennovation in Ukraine

Project no. 22320101



WWTP for the urban areas

Lubos Jurik

The project is co-financed by the Governments of the Czechia, Hungary, Poland and Slovakia through Visegrad Grants from International Visegrad Fund. The mission of the fund is to advance ideas for sustainable regional cooperation in Central Europe.

Composition of Wastewater

Visegrad Fund

- Inorganics
 - Ammonia
 - Nitrate
 - Phosphate
 - Carbonate
 - Minerals
 - Calcium
 - Magnesium
 - Iron
 - Etc.

Organics

- Biodegradable (BOD)
 - Carbohydrates
 - Proteins (TKN)
 - FOG
- Non-Biodegradable (COD-BOD)
 - Large particles
 - Complex polymers (plastics, lignin)
 - Surfactants (some)
 - Pesticides (some)
 - Pharmaceuticals (some)

Bacteria

- $C_5H_7O_2N$
- Growth rates double every 10°C until optimum temp reached
- pH optimum 6.5-7.5
- Nutrients may be limited in industrial wastewaters

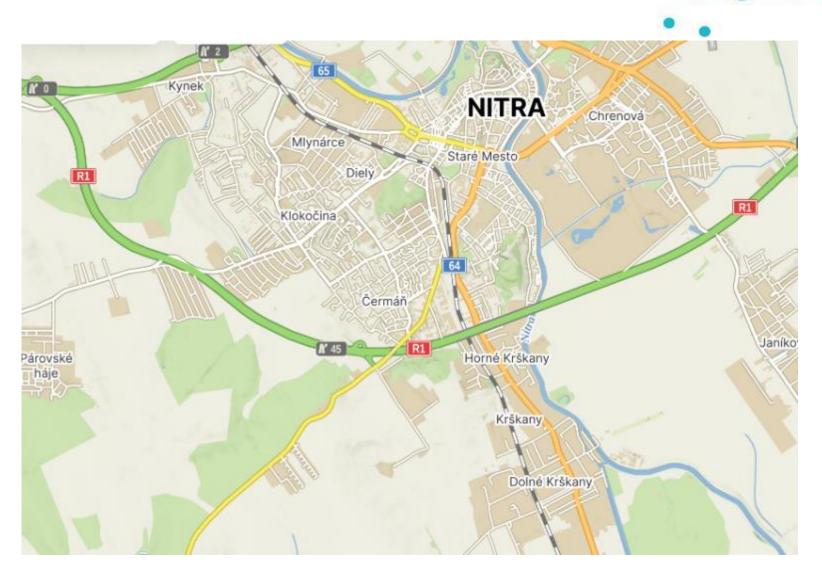
Constituent or element	Percent of dry weight	•
Major cellular material		1.5
Protein	55.0	segrad Fund
Polysaccharide	5.0	
Lipid	9.1	
DNA	3.1	
RNA	20.5	
Other (sugars, amino acids)	6.3	
Inorganic ions	1.0	
As cell elements		
Carbon	50.0	
Oxygen	22.0	
Nitrogen	12.0	
Hydrogen	9.0	
Phosphorus	2.0	
Sulfur	1.0	
Potassium	1.0	
Sodium	1.0	
Calcium	0.5	
Magnesium	0.5	
Chlorine	0.5	
Iron	0.2	5
Other trace elements	0.3	5

Theoretical Yield [(g cell / g glucose) / (g COD O2 / g glucose)]

Solve for the theoretical yield

$$3C_6H_{12}O_6 + 8O_2 + 2NH_3 \rightarrow 2C_5H_7NO_2 + 8CO_2 + 14H_2O_3$$

3(180) 8(32) 2(17) 2(113)


COD =
$$\frac{\Delta(O_2)}{\Delta(C_6H_{12}O_6)} = \frac{6(32 \text{ g/mole})}{(180 \text{ g/mole})} = 1.07 \text{ g O}_2/\text{g glucose}$$

$$Y = \frac{\Delta (C_5 H_7 NO_2)}{\Delta (C_6 H_{12} O_6 \text{ as COD})} = \frac{2(113 \text{ g/mole})}{3(180 \text{ g/mole})(1.07 \text{ g COD/g glucose})}$$

= 0.39 g cells/g COD used

WWTP Nitra

WWTP Nitra location

WWTP Nitra

Visegrad Fund

Project ISPA: 2000/SK/16/P/PE/002

Financing:

ISPA/kohézny fond/ 50% 5 177 100 EUR

Slovakia 25% 2 588 550 EUR

Nitra Town 25% 2 588 550 EUR

Total: 10 354 200 EUR

Investment: Mesto Nitra

Technical advisor: Carl Bro Group, Denmark

Costruction: Conzortium VÁHOSTAV-KPRIA- INGSTAV

Buiding parts: Váhostav – SK, a.s. Žilina

Technologie: Královopolská a.s, Ingstav a.s.

User: Town Nitra and Západoslov. vodárenská spoločnosť, a.s. Nitra

WWTP Nitra location

- Visegrad Fund
 - •

WWTP Nitra

Visegrad Fund

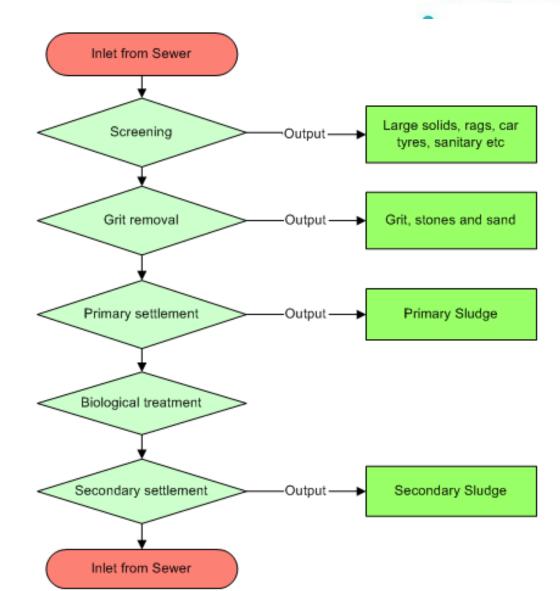
Finished: 18.10.2007

WWTP Nitra Krškany is placed at left bank of Nitry river.

Capacity of WWTP is 212 000 El. Yearly outflow is 13 249 500 m³

WWTP Nitra

The Wastewater Treatment Process


Visegrad Fund

Preliminary Treatment

Primary Treatment

Secondary Treatment


Tertialy treatnent

Inflow part

Inflow from the municipality

Flow measurement at the inflow

Gravel trap at the inflow before pumpingsegrad Fund

Coarse screens

Captured grabs at screens

Mechanical pretreatment

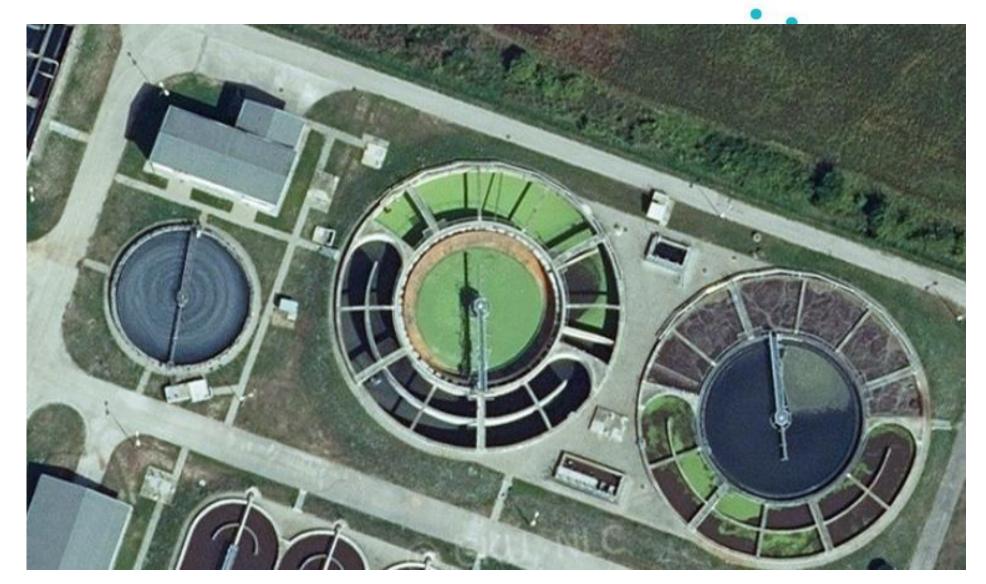
- Visegrad Fund
 - •

Pumping station Archchimedes screew

Pumping station Archchimedes screew

Outflow from fine screens

Sand trap and fats and oils captures



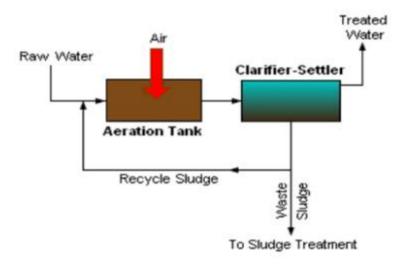
Sand trap

Primary settlement and Sludge regeneration and Fund

Primary setlement

Primary setlement

Primary setlement



Outflow from primary settlement to biological treatment

Activated Sludge (ASP)

Activated sludge consists of a mass of micro-organisms which feed on pollutants in the sewage. The bacteria is suspended in liquid and is called "mixed liquor", it is mixed with sewage and aerated in aeration basins before passing to final settlement tanks where it is settled and the sludge returned. The effluent produced is of a high quality.

Biological treatment

Biological Treatment

Activated Sludge technology - construction rad Fund

the aeration in Activation part

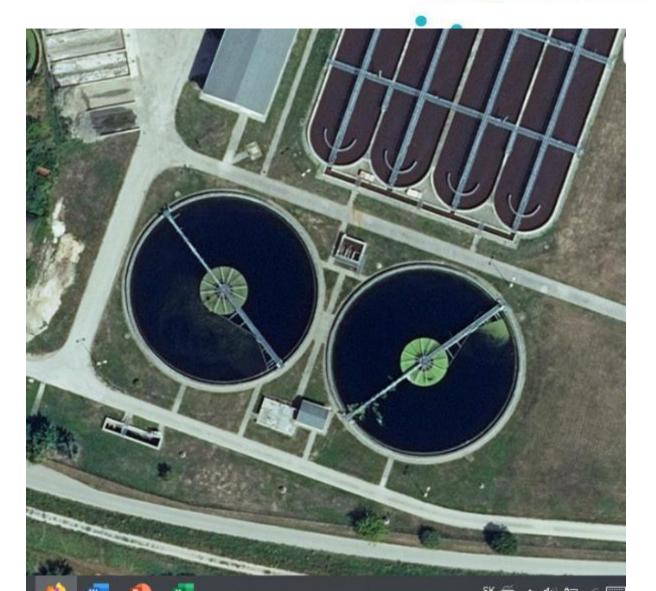
ad Fund

Air blowers BOD5

Nitrification

- $NH_4^+ \rightarrow Nitrosomonas \rightarrow NO_2^-$
- $NO_2^- \rightarrow Nitrobacter \rightarrow NO_3^-$
- Notes:
 - Aerobic process
 - Control by SRT (4 + days)
 - Uses oxygen \rightarrow 1 mg of NH₄⁺ uses 4.6 mg O₂
 - Depletes alkalinity → 1 mg NH₄⁺ consumes 7.14 mg alkalinity
 - Low oxygen and temperature = difficult to operate

Denitrification



Using methanol as carbon source:

$$6 \text{ NO}_3^- + 5 \text{ CH}_3 \text{OH} \qquad -\text{N}_2 + 5 \text{ CO}_2 + 7 \text{ H}_2 \text{O} + 6 \text{ OH}^-$$

Using an endogenous carbon source:

Finaly settlement

Finaly setlement

WWTP finaly setlement

Visegrad Fund

.

Sludge regeneration

Sludge treatment

Sludge treatment

WHAT IS SLUDGE?

Visegrad Fund

Bacteria and other micro-organisms

Mainly water (up to 99%)
Dissolved solids
Settled and suspended solids

Nutrients (N, P, K)

Faecal matter

Metals

Energy

Sewage sludge

- Visegrad Fund
 - .

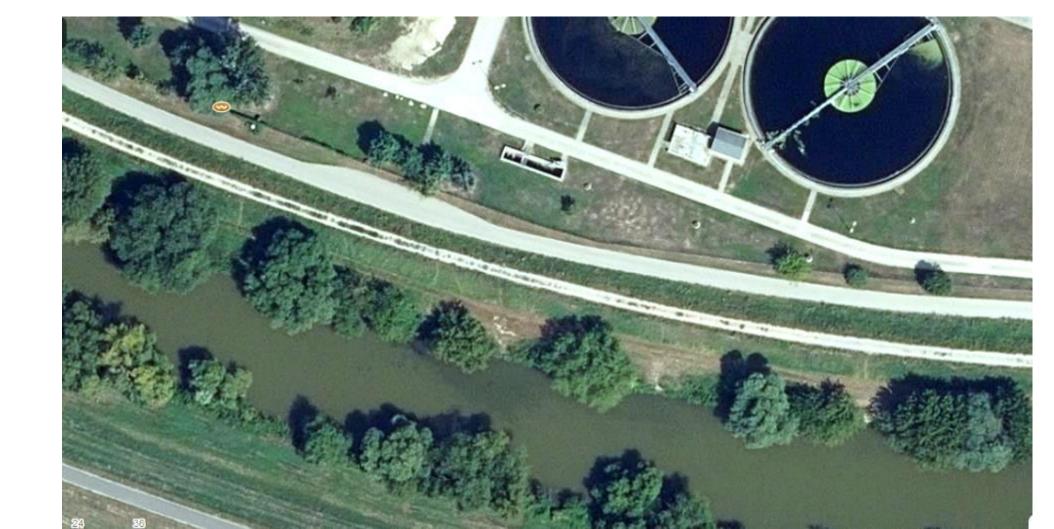
WWTP Nitra Sluge stabilisation and Biogas grad Fund

Sludge stabilisation

Visegrad Fund

•

Biogas storage space



Incineration of surplus gas

Outflow to the river

- Visegrad Fund
 - . .

