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|ce-Breaking

Activity

1. Receive Your Sheet.

2. Find Matching Students: if the statement is "l have a pet,"” find
someone who has a pet.

3. Collect Signatures: Each person can only sign your sheet TWICE.

4. Complete the Sheet: The goal is to fill up your sheet with as many
different signatures as possible.

5. Time Limit: You have 10-12 min to complete this activity.
* Remember:

Enjoy the process of getting to know each other!

e Good luck and have fun!



* The main goal of this training Is
to provide an overview of the
concept of climate change, crop
modeling and evaluate its impact
on agricultural drought.

 Participants will gain the ability
to analyze agricultural data and
understand its relationship to
climate change.




s <\
 Climate Change and Agriculture \

 Crop modeling

« Analyzing Data Related to
Agricultural Drought

 Data-Driven Machine Learning for
Predicting Agricultural Drought




Training Roles:

* Engage in Group Work

* Participate Effectively In
Discussions

» Ask Questions
« Keep Mobile Phones on Silent Mode




o |_et's start by
dividing everyone
Into groups.






Introduction

* In recent years, the world’s population has
Increased rapidly, and is expected to increase
from 7.2 billion people to 9.6-12.3 billion In
2100 (Gerlandet al. 2014).

 Thus, the United Nations launched the
Sustainable Development Goals (SDGs), which
Include an ambitious goal for zero hunger
globally (SDG2) by 2030 (Mason-D'Croz et al.
2019).



* Nonetheless, climate change (CC) has rapidly
affected many ecosystems earlier than predicted.

» Even though GHGs exist naturally, human activities
have released huge amounts of it, leading to more
trapping of the sun’s heat, which exceeds the needs
of the earth, and which is known as “global warming
- GW”. This global warming has directly affected
weather patterns on a global scale, causing “climate
change - CC”.

 In this context, the United Nations Framework
Convention on Climate Change (UNFCCC)
defined CC as a “change of climate that is
attributed directly or indirectly to human activity
that alters the composition of the global
atmosphere and that is in addition to natural
climate variability observed over comparable
time periods”.




 GHGs are predominantly made out of carbon
dioxide (CO,), methane (CH,), and nitrous
oxide (N,O), which are quickly expanding In
the air, causing global climate change.

» Unfortunately, the current GHGs projection
reveal that the CO, concentration will reach
590 ppm by the end of the 215 century.

 The GHG emanations can be highlighted as
follows: 31.6% from iIndustrial activities,
12.2% from changes of land use, 24.9% from
power sector, 14.3% from transportation,
13.8% from the agricultural sector, and 3.2%
from waste industry.



* In a global scale, and after 25 years of
work based on the United Nations
Framework Convention on Climate
Change  (UNFCCC-1992) (Earth
Summit in Rio de Janeiro); finally, the
world leaders signed the Paris
Agreement (FA) (April 2017).

* The PA which is designed at COP 21
(Paris, December 2015) was a hybrid
approach combining two previous
framework the first one was Kyofto
protocol (2002) “top-down” and
Copenhagen agreement “bottom-up”
(Asadnabizadeh 2019). Where the main
Issue was to minimize the world
emissions of GHGs to keep GW below
2 °C.




Climate change

» The Earth’s atmosphere is full of gases,
some of which are greenhouse gases
(GHGS); these gases trap the sun’s heat and
keep earth warm for life. However,
accelerated civilizational development and
Industrialization increased the concentration
of GHGs In the earth’s atmosphere. In this
sense, CO, reached 410.6 ppm in 2019,
compered with 280 ppm in the 1760s. This
increase led to rapid climate change (CC).

 Reddy (2015) summarized the main
Indicators of CC as follows: 1) an increase
In temperature, 2) an increase in ocean
heat content, 3) an increase in sea level
and surface temperatures, 4) an increase
In  continentality, 5) tropospheric
temperature, 6) a decrease in sea ice, 7) a
decrease in snow cover, and 8) a decrease
In sea ice glaciers.




THE GREENHOUSE EFFECT
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Figure 1 Schematic overview of GHGs effects (11)




Sources and impacts of greenhouses gases:
Carbon dioxide (CO,)

Before the industrial revolution CO, did not
exceed 300 ppm.

Since then, different activities have led to a
rapid increase in CO, emissions due to coal
use (Boden et al. 2017), which increased fossil
fuel emissions by 100% (from 1.5% to 3%)
between 1980 and 2000 and 2000-2012
(Hansen et al. 2013) (Figure3), and by 29%
from 2000 to 2008 (Le Quéré et al. 2009).
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Figure 3. Emissions of CO, (Gt C/year) from different sources between
1850 and 2012 on a global scale (Hansen et al. 2013)




CH, atmospheric growth rate (ppb yr)
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Figure 4. Sources, concentration and sinks of CH, from different world databases
(NOAA, AGAGE, UCI and CSIRO) published by Nature (Kirschke et al. 2013).
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Greenhouse Gas
Emissions from Soil

Soil serves as a source and sink for
GHGs (Oertel et al. 2016).

By 2030, the IPCC (2007) projected an
Increase in N,O and CH, from the
agricultural sector of 30-60% and 60%,
respectively, due to an increase in world
population and food demand.

The GHGs budget reveals that 35% of
CO,, 47% of CH,, 53% of N,O, and
21% of NO is emitted from soil (IPCC,
2007).




GHG emissions from soil are related to many processes and affected by many
driving factors, which can be summarized as follows :
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Figure 7. Schematic illustration of driving factors controlling soil GHG
emissions, as proposed by Oertel et al. (2016)



1. Soil moisture (M,,;): M., is one of the leading factors that controls soil emissions, due to the fact that M, ,

controls both the C-cycle and the N-cycle.
For instance, when M, is less than 10%, the NO emissions decrease significantly (Brimmer et al., 2008).

Similarly, an increase of M, ;soil above 30% accelerates N,O emissions, with an optimum situation in which

60% of the soil pores are filled by water (Gao et al. 2014).

In a similar context, CO, emissions are reported to be higher when 20-60% of the soil pores are filled by water

(Wang et al. 2011). On the contrary, CH, sinks into the soil when aerobic conditions are dominant (Dutaur, and
Verchot 2007); however, rice production areas and wetlands are the main sources of CH, (Wang et al. 1996,
Hwang et al. 2020).



2- Soil temperature (7.,): an increase in 7., leads to an increase in soil emissions due to the

enhancement of microbial metabolism (Oertel et al. 2016).

Many researchers have noticed an exponential relation between an increase in 7., and NO and CO,
emissions ( 7ang et al. 2003).

Similarly, an increase in 7, results in an exponential increase in N,O emissions, while the consumption

of CH, increases linearly (Mosier et al. 1996).
Also, an increase by 5°C of 7, accelerates CO, emissions by 25-40% (Rustad and Fernanaez 1998).

Field research studies have shown that seasonal changes in 7

ol

and M, ; lead to seasonal changes in soil

SO!

GHG emissions (Schaufler et al. 2010), whereas the highest emissions recorded in summer.

However, M, ; along with 7., explains 86% of the total variance of N,O emissions, and 74% of the total
variance of N,O emissions (Schindlbacher et al. 2004).



Site specific criteria (S,): Sp extends to include location, topography, elevation, and cover, which all together
affect M, and T, For instance, N,O emissions are higher in lowlands or mountain foothills than on slopes

and hills, due to the accumulation of soil moisture, which is higher than in other landscapes ( Oertel et al. 2016).

Exposure to fires: fires in any ecosystem can affect the GHG budget, where burning areas show lower flows of

carbon dioxide and nitrous oxide compared to unburned areas one month after fire (K/m, 2013).

Soil pH: this factor affects microbial activity; thus, it influences total GHG emissions from soil. Low emissions
have been reported in acidic soil (Oertel et al. 2016). Scientifically, moderate pH (pH neutral) is optimal for
GHG emissions. CO, emissions are higher in neutral pH than other pH-values (Cuhel et al. 2010), however CH,

production needs pH values between 4 and 7 (Dalal and Allen 2008).

Interestingly, Pilegaard et al. (2006) reveals an absence of a correlation between NO and N,O and pH.



Soil nutrient availability (N,,;): the availability of C and N play an important role in GHG emissions from soil, as
both of them are essential for microbial respiration. The interaction between different soil gases and nutrients can be

summarized as follows:

e A negative correlation between A, ; (i.e. C/N) and N,O emissions; the optimum value for releasing N,O is
C/N= 11 (Pilegaard et al. 2006)

e Low pH values and drought, besides C/N<20, N,O emissions can be significantly affected (Christiansen et
al. 2012)

e Application of N fertilization and conventional tillage increases N20O emissions (Malhi et al. 2006)

o Application of animal manure increases CO,, and N,O emissions, while a mixture of manure and inorganic

fertilizer significantly increases CH, uptake (Deng et al. 2020)

e A positive correlation between AN, (i.e. C/N) and CO,, and CH, emissions; the optimum value for

releasing N,O is C/N= 11 (Pilegaard et al. 2006)



Land cover (LC): LCextends to include vegetation type and age, which directly affect soil respiration. Young
trees are recorded to have high soil respiration, which decreases gradually with stand age; this point can be
explained by the loss of young hair roots (Oertel et al. 2016). Mixed LC trees and grasslands, with variety of C3

and C4 have led to an increase in C-sinks in the soil (Fornara and Tilman 2008)

Land use and land use changes (LULUCs): changing the terrestrial ecosystem from one land use to another
alters the carbon budget and leads to an increase in GHG emissions. For example, in the last few decades forest
and peat lands have been transformed into agricultural land, which has led to a tremendous loss of soil carbon,

estimated to be over 30% of the total carbon in the top soil layer (70 mm) (DeGryze et al. 2004).



Impact of climate change

on the agricultural sector







Impact of climate change on
the agricultural sector
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by enhancing plant growth A0 YU BN AR D

through increased CO2, and
negatively, by causing extreme
events like droughts and floods
that reduce agricultural
production.



Table 1. CC impacts on different agroecosystem components

CO, enrichment
Yield
Crop
Rainfed system
Product quality
Pest and diseases
Irrigation
Runoff
Water
Water balance
Groundwater
Organic matter (OM) content
Soil Plant residual decomposition
Uy
Feed and fodder
Livestock Disease
Production

Breeding and migration

Fisheries

Production

Enhanced photosynthesis especially for C3 crops (i.e. wheat, rice)

Decrease in grain-filling duration, due to decrease in rainfall (R), as well as, increase in evapotranspiration and

extreme events.

Reduction in R due to climate shifting

May be affected

Climate shifting leads to rapid pathogen transmission and invasion of new areas.

Increase in temperature (T) and decrease in R amounts
Increase in T and decrease in R amounts

Increase in extreme events

Change in climate variables

Less rainfall

Rapid mineralization of OM

Elevated CO, leads to high C/N

Rapid mineralization of OM

Decrease in production, water scarcity and increase in T
Climate shifting

Heat stress

Increase in T

IncreaseinT



 Climate adaptation refers to the process of adjusting to
the changing climate conditions and mitigating the
negative impacts that result from those changes. Climate
adaptation measures can include a range of actions such
as:

 Implementing infrastructure that is more resilient to
extreme weather events, such as building seawalls or
Improving drainage systems.

° « Modifying agricultural practices to cope with changing
adaptatl on precipitation and temperature patterns.

Climate

« Developing new drought-resistant crop varieties.

« Creating early warning systems to help people prepare for '
natural disasters such as hurricanes, floods or wildfires.

« Establishing new land use regulations that consider the /
potential impacts of climate change.




 Climate mitigation refers to actions taken to reduce the emissions of greenhouse
gases into the atmosphere and limit the magnitude of future climate change. The
primary objective of climate mitigation is to address the root causes of climate
change by reducing greenhouse gas emissions.

» There are many ways to achieve climate mitigation. Some examples of mitigation
measures include:

1. Implementing energy-efficient technologies in homes, buildings, and industries to
reduce energy consumption and carbon emissions.

I = 2. Expanding the use of renewable energy sources such as wind, solar, geothermal, and
I I I ate hydro power to replace fossil fuels.

3. Promoting the use of electric vehicles and improving public transportation systems
to reduce greenhouse gas emissions from transportation.

mitigation

4. Implementing carbon capture and storage technologies to capture carbon dioxide
emissions from power plants and other industrial processes.

5. Encouraging lifestyle changes that reduce individual carbon footprints, such as
reducing meat consumption, using public transportation or biking, and reducing
energy consumption.

» The goal of climate mitigation is to limit the magnitude of future climate change and
reduce its impacts on the planet and human societies. /

> 4




2-5 Drought as an indicator of

climate change




2-5 Drought as an
indicator of climate

change

« The IPCC reports indicate a
warming trend with increased
warm days, higher global
temperatures by 1-3°C from
1950 to 2008, and rising
Arctic permafrost
temperatures by  2-4°C,
leading to more intense and
prolonged drought
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On a global scale, of all-natural disasters drought is reported to be the costliest one. Between 1900 and 2011
drought killed around 11 million people and badly affected approximately 2 billion people (Mohammed and
Harsanyi 2019; Ivits et al. 2014).

Notably, the impact of drought has been amplified over the last decade (1999-2010) which has affected
more than 900 million people (Spinoni et al., 2014).

The average drought damages range between $ 6 and 8 billion per year in the USA alone Dai (2011) .

Moreover, between 1949 and 1995 drought events cost China more than US $12 billion (Dai et al. 2020).

N



2.5.1. The definition of drought

The simple definition of drought is a significant decrease in precipitation below the

average for a sustained period




Table 2. Criteria for drought definition by different international

organizations

World Meteorological Organization Rainfall deficiency for a continued period of time WMO, (1986)

Links between rainfall and land resource production UN Secretariat General,

systems (1994)

Secretary-GeneraI of the United Nations

Food and Agriculture Organization Links between soil moisture and crops failure FAO, (1983)
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Drought indices |



Abbreviatio

Drought indices Reference Input parameters Disadvantage Application
n
Palmer drought severity index PDSI Palmer (1965) ° Rainfall, ° Underestimation of Runoff. China
Temperature, Responding slowly to dry spell evolution Iran
Local water content Mongolian
Plateau
Europe
Standardized precipitation index SPI McKee et al. (1993) ° Rainfall ° Availability of monthly R data for a long period.  |Syria
Depends only on R and neglected other factors Hungary
China
Mongolian
India
Standardized precipitation SPEI Vicente-Serranoetal. (2010) | e Rainfall, ° Using Thornthwaite equation for calculating China
evapotranspiration index Temperature, potential ET, Mongolian
(ET,) Argentinian
Turkey
Soil moisture deficitindex SMDI Narasimhan, and Srinivasan . Soil moisture . Input data not easy to acquire China
(2005) Land cover
Soil type Brazil
Vegetation condition index VCl Kogan, 1995 NOAA-AVHRR NDVI Not applicable in winter time India
data China

United States

Chile

India

Greece




Drought and irrigation

The need for irrigation in the agricultural sector is becoming increasingly important in the face of a changing
climate. As the climate changes, many areas are experiencing more frequent and severe droughts, and
changes in rainfall patterns. This can lead to reduced crop yields, and in some cases, crop failures.

Irrigation can help mitigate the impact of these climate changes on agricultural production by providing a
reliable source of water to crops. Irrigation can help farmers to maintain consistent crop yields, even during
periods of drought or reduced rainfall. In addition, irrigation can be used to supplement water during periods
of low rainfall, ensuring that crops have enough water to grow and mature.

However, Overuse of irrigation can lead to problems such as soil salinization, and depletion of groundwater
resources. Therefore, it is important to implement sustainable irrigation practices that take into account the
availability and quality of water resources, soil conditions, and the specific needs of different crops.



Hungary and climate change: |



®In central Europe, drought incidents have become more active and larger,
correlated with raised temperatures and shortages of rainfall, as reported by
many researchers, including Bartholy et al (2013) in Hungary, Kern et al. (2016)
in Central Europe, and Cheval et al (2014) in Romania.

® As in other European countries, Hungary is subjected to CC, where drought
episodes have started to hit Hungary regularly in the last few decades, causing
diverse impacts in different sectors (Csete er al, 2013, Gdlos et al, 2007).
Interestingly, /ts projected that drought events would continue to hit Hungary
until the end of the 271st century, with a special tendency in summer.

* Within this context, heatwave cycles were reported to have increased in the
Carpathian Region (including Hungary), while cold waves were shorter and less
frequent (Spinoni et al 2015).
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* Mohammed et al (2019) reported
that the drought in 2011 was the
worst - especially in Siéfok — during
the reference period 1985-2016.

* Meanwhile, Makra er al (2002)
reported that over the last few
decades, Hungary has witnessed drier
conditions, comparing with the early
years of the last century —i.e. between
1901 and 1940 - when wetter
conditions were recorded. In that
same context, Szép er al (2005)
highlighted that drier soil conditions
were observed in the 20™" century.






How to analyze drought? |




Trend analysis

by MK test

SPI calculation

Hands on:

Drought impact

on crop yield




Trend analysis
by MK test




https://www.mdpi.com/2073-4433/12/10/1339

s
Table 5. Trends in Ag.D indices (SPI-6, SPEI-6) and sunflower production (kg/ha) across Hungary.

5PI-6 SPEI-6 Sunflower
County Code
MK and 3 i) MK and B 1] MK and p
Bacs-Kiskun EC 0.0005 0.05 -5 =105 0.23 +55.83 0
Baranya BA 0.0002 0.32 -2 =104 0.40 +43.04 0
Bekes BE 0.0005 0.05 § =105 0.7% +50.03 =0.0001
Borsod-Abalj-Zemplén BO 0.0005 0.06 7=107% 0.75 +75.19 =0.0001
Budapest EU 0.0003 0.28 -3 = 1074 027 +70.23 0
Czongrad-Csanad C5 0.0003 0.21 -1=10"4 0.55 +32.13 0.01
Fejér FE 0.0001 0.67 -4 =104 0.08 +47.99 0.01
Gydr-Moson-Sopron oY 0.0001 0.74 -5 =104 0.03 +38.33 0.01
Hajdd-Bihar HE 0.0006 0.01 2 =104 0.46 +71.6 =0.0001
Heves HE 0.0005 0.02 1=1074 0.80 +71.34 0
Jasz-Nagykun-Szolnok JMN 0.0007 0.00 2 =104 0.44 +60 =0.0001
Komarom-Esztergom KE 0.0003 0.21 -2 =104 0.26 +58.06 <0.0001
Mograd NO 0.0003 0.24 -1=107% 0.65 +G5 0.01
Pest PE 0.0003 0.16 -2 =10% 0.48 +G5.15 0

Somogy S0 —-0.0004 0.07 -8 =107% 0.00 +61.46 0
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Mann-Kendall trend tests
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Mann-kKendall trend test / Two-tailed test (actual):

Kendall's t 0.7201
5 2162.0000
Var(S) | #
p-value (Tv < 0.0001
alpha 0.05

An approximation has been used to compute the p-value.

Test interpretation:

HO: There is no trend in the series

Ha: There is a trend in the series

As the computed p-value is lower than the significance level alpha=0.053, one should reject the null
hypothesis HO, and accept the alternative hypothesis Ha.

Sen's slope:

Value  er bound (Ser bound (55%)
Slope 83.8462 73.8093 94,3333
Intercept  991.1538 854.8205 #HHHHHH

The continuity correction has been applied.

Ties have been detected in the data and the appropriate corrections have been applied.

actual

10000

aciual
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* Meteorological drought is defined usually on the
basis of the degree of dryness (in comparison to
some “normal” or average amount) and the
duration of the dry period. Definitions of
Meteorological

meteorological drought must be considered as

region specific since the atmospheric conditions

drought

that result in deficiencies of precipitation are
highly variable from region to region.




® What factors contribute to agricultural
drought and how does itimpact crop

growth and yield during different stages of

development?




s
* Agricultural drought links various characteristics of meteorological (or
hydrological) drought to agricultural impacts, focusing on precipitation
shortages, differences between actual and potential evapotranspiration, soil
water deficits, reduced groundwater or reservoir levels, and so forth. Plant
water demand depends on prevailing weather conditions, biological

Ag ri cu Itu ral characteristics of the specific plant, its stage of growth, and the physical and

biological properties of the soil.

* Agood definition of agricultural drought should be able to account for the

drought

variable susceptibility of crops during different stages of crop development,

from emergence to maturity.

* Deficient topsoil moisture at planting may hinder germination, leading to
low plant populations per hectare and a reduction of final yield. However, if
topsoil moisture is sufficient for early growth requirements, deficiencies in
subsoil moisture at this early stage may not affect final yield if subsoil

moisture is replenished as the growing season progresses or if rainfall meets
plant water needs.
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* Hydrological drought is associated with the effects of
periods of precipitation (including snowfall) shortfalls on
surface or subsurface water supply (i.e, streamflow,
reservoir and lake levels, groundwater). The frequency and
severity of hydrological drought is often defined on a

Hydrological

watershed or river basin scale.

drought * Although all droughts originate with a deficiency of
precipitation, hydrologists are more concerned with how

this deficiency plays out through the hydrologic system.




&
® Socioeconomic  definitions  of  drought
associate the supply and demand of some
economic good with elements of

meteorological, hydrological, and agricultural

drought. It differs from the types of drought

Socioeconomic

because its occurrence depends on the time
and space processes of supply and demand to

identify or classify droughts.




&
* A more recent effort focuses on ecological
drought, defined as "a prolonged and

widespread deficit in naturally available water

supplies — including changes in natural and

Ecological

managed hydrology — that create multiple
C| rou ght stresses across ecosystems.”




o Although, precipitation is a critical indicator of the availability of
water, but also both of precipitation and temperature together have

an important role that influence in availability and stability of water.

Drought

Therefore, they effect on the urban, agricultural, and ecosystems
in d icato Is: the water supply, as well as, on agricultural production and forest stress,

by control in the ratio of actual and potential evapotranspiration.
SPI and SPEI .

A several parameters such as rainfall, temperature, soil moisture,
streamflow, river discharge, vegetation condition, and ecosystem
responses can be used as indicators of drought

/
7




* The SPI is based only on monthly rainfall data; so, geographical and topographical
differences are not considered. Meanwhile, SPEI is a newly improved index developed
from the same background as SPI but based on rainfall and potential evapotranspiration
(PET) (i.e. the monthly climatic water balance)

* However, both are statistical indices and can be calculated for any time scale (i.e. for 1-,
3-, 6-, 9-, or 12-month time scales). The choice of the time scale is, in practice, dependent
on the goal of the study. If it is related to agriculture drought then a 1-, 3-, or 6-month
scale should be chosen, while a 9-, or 12-month scale is used for monitoring hydrological
drought (Tan etal. 2015).

* SPI and SPEI values for drought can be classified, as can be seen in Table 1. The positive
values indicate wet conditions, while negative values indicate drought conditions (less
than median rainfall) (Bordi & Sutera, 2001). '

change monitoring due to the fact that the SPEI takes into consideration both temperature an/

o

Interestingly, the SPEl is superior to the SPI in term of drought characterization and climate

soil moisture content (used to compute PET) .




Tab. | Drought categories based on Agnew's scheme
(2000).

SPIl and SPEIl values

Drought category
>0 No drought
0to-05 Mild drought
_05to0-0.84 Moderate drought
_0.84 to -1.28 Severe drought
128 to -1.65 Extreme drought

1.65- > Very extreme drought
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Impact of agricultural
drought evolution on

crop production




Crop production has recently witnessed a remarkable increase ,
because of the adaptation of modern agricultural technology.
Therefore, to remove the bias attributed to non-climatic factors,
the yield data were detrended using simple linear regression
model.

Studies have shown that by detrending and transforming yield
data using the Standardized Yield Residuals Series (SYRS)
(mean=0, standard deviation=1), the effects of non-climatic
factors on agricultural production can be eliminated.

The Standardized Yield Residuals Series (SYRS) was calculated
using the formular in equation (3):

SYRS 1y = “C”;is’;“t”“) e e e 3

where C: crop,C: county,y: year,t : timescale, SYRScrcyt
Standardized Yield Residual Series, &cpr ¢yt standardize
residual from the LGM (detrended), .Bcsy mean of &, Cyt

0, s,y,t: standard deviation of Eor ,c,y,t- The categories of the
SYRS are presented in Table 2


https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.6210#joc6210-tbl-0001

SYRS.;y ¢

-0.5<SYRS<0.5

Table 2. SYRS ~0.5<SYRS<-1.0
. ‘_ . Moderate losses -1.0<SYRS<-15
CIaSS |f| cation High losses -1.5<SYRS<-2.0

Extreme losses SYRS<-2.0



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.6210#joc6210-tbl-0001

* To highlight the impact of agricultural drought (SPI & SPEI-3, -6) on
crop yield, the crop-drought resilient factor (CDRF) is recommended.

* The CDRF refers to a crop’s ability to withstand external stresses

(such as drought) while maintaining its structure and functions '®.

* The CDRFwas calculated following equation (4) '889°,

e CDRF =200 A
dge

®* Hence, ddr donates yield value in the driest year (growing cycle)
during the monitoring period at regional scale, while ddt refers to
detrended yield value in the same year. Table 3 shows the CDRF
classification. To obtain the driest year, the average gridded points
for SPI-3, -6 & SPEI-3, -6 values that covered each county was
calculated, then the lowest value (in each county) was highlighted,
then the corresponding year was chosen for CDRF calculation.



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.6210#joc6210-tbl-0001

Table 3. Classification
of the CDRF value

Crop yield resilience to drought

Slightly non-resilient

Moderately non-resilient

Severely non-resilient

CDRF>1

0.9 <CDRF<1

0.8 <CDRF< 0.9

CDRF<0.8
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* The Agricultural Production Systems sIMulator (APSIM) is a powerful tool used for
simulating and optimizing agricultural production systems, including irrigation. As
climate change continues to have an impact on the agricultural sector, it is
becoming increasingly important to identify and implement adaptive management
strategies to mitigate the impact of changing weather patterns on crop production.

How the

® One of the key features of APSIM is its ability to simulate and model different
AgﬂCUItu ral irrigation strategies in response to changing climate conditions. By inputting data

such as weather patterns, soil type, and crop requirements, APSIM can help farmers

PrOd uction and researchers make informed decisions about when and how to irrigate their
crops.
Systems sIMulator
* Forexample, in a changing climate where droughts and water scarcity are becoming
(APSIM) iS used for more common, APSIM can be used to identify the most water-efficient irrigation
techniques for a particular crop or soil type. This can include strategies such as drip
Irrlgatl()n in4d irrigation, which uses less water than traditional sprinkler systems, or rainwater
h . I’ 5 harvesting, which captures and stores rainwater for later use. '
c angl ng climate: * In addition to simulating different irrigation strategies, APSIM can also be used to

model the impact of climate change on crop yields and water availability. This

allows farmers and researchers to identify potential risks and adapt thei/

o

management strategies accordingly.




* The Decision Support System for Agrotechnology Transfer (DSSAT) is a computer-
based software system used to simulate and optimize crop growth and yield under
different weather, soil, and management scenarios. It includes a suite of crop
models that can be used to assess the impact of climate change on crop production
and to identify optimal irrigation management strategies.

How the Decision

® In a changing climate where water availability and crop productivily are

Su PPO rt System for increasingly uncertain, DSSAT can be used to evaluate different irrigation scenarios
and identify the most effective water management practices. For example, DSSAT
AgrOteCh nOIOgy can simulate the effects of different irrigation schedules, water application rates,
and irrigation depths on crop growth and yield.
Transfer |
* Furthermore, DSSAT can also be used to evaluate the impact of different climate
(DSSAT) iS used scenarios on crop yield and irrigation requirements. By incorporating historical
weather data, future climate projections, and other environmental data, DSSAT can
fo r irrigatio n i na help farmers and researchers to identify the most sustainable and efficient irrigation

strategies fora particular crop or region.

changing climate? .

In addition to irrigation management, DSSAT can also be used to optimize other
management practices such as fertilizer application, crop rotation, and tillage. By
integrating these different management practices with irrigation managemey
DSSAT can help to develop more comprehensive and sustainable agricultu

management strategies that are resilient to the impacts of climate change,




Conclusion

* In this training, we
learned about greenhouse
gas emissions, the
relationship between
agriculture and climate,
analyzing drought, and
crop modeling.
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